Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rethinking Pre-Training in Tabular Data: A Neighborhood Embedding Perspective (2311.00055v2)

Published 31 Oct 2023 in cs.LG

Abstract: Pre-training is prevalent in deep learning for vision and text data, leveraging knowledge from other datasets to enhance downstream tasks. However, for tabular data, the inherent heterogeneity in attribute and label spaces across datasets complicates the learning of shareable knowledge. We propose Tabular data Pre-Training via Meta-representation (TabPTM), aiming to pre-train a general tabular model over diverse datasets. The core idea is to embed data instances into a shared feature space, where each instance is represented by its distance to a fixed number of nearest neighbors and their labels. This ''meta-representation'' transforms heterogeneous tasks into homogeneous local prediction problems, enabling the model to infer labels (or scores for each label) based on neighborhood information. As a result, the pre-trained TabPTM can be applied directly to new datasets, regardless of their diverse attributes and labels, without further fine-tuning. Extensive experiments on 101 datasets confirm TabPTM's effectiveness in both classification and regression tasks, with and without fine-tuning.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.