Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Pre-Training in Tabular Data: A Neighborhood Embedding Perspective (2311.00055v2)

Published 31 Oct 2023 in cs.LG

Abstract: Pre-training is prevalent in deep learning for vision and text data, leveraging knowledge from other datasets to enhance downstream tasks. However, for tabular data, the inherent heterogeneity in attribute and label spaces across datasets complicates the learning of shareable knowledge. We propose Tabular data Pre-Training via Meta-representation (TabPTM), aiming to pre-train a general tabular model over diverse datasets. The core idea is to embed data instances into a shared feature space, where each instance is represented by its distance to a fixed number of nearest neighbors and their labels. This ''meta-representation'' transforms heterogeneous tasks into homogeneous local prediction problems, enabling the model to infer labels (or scores for each label) based on neighborhood information. As a result, the pre-trained TabPTM can be applied directly to new datasets, regardless of their diverse attributes and labels, without further fine-tuning. Extensive experiments on 101 datasets confirm TabPTM's effectiveness in both classification and regression tasks, with and without fine-tuning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.