Papers
Topics
Authors
Recent
2000 character limit reached

Finite Difference Approximation with ADI Scheme for Two-dimensional Keller-Segel Equations (2310.20653v1)

Published 31 Oct 2023 in math.NA, cs.NA, math-ph, math.AP, and math.MP

Abstract: Keller-Segel systems are a set of nonlinear partial differential equations used to model chemotaxis in biology. In this paper, we propose two alternating direction implicit (ADI) schemes to solve the 2D Keller-Segel systems directly with minimal computational cost, while preserving positivity, energy dissipation law and mass conservation. One scheme unconditionally preserves positivity, while the other does so conditionally. Both schemes achieve second-order accuracy in space, with the former being first-order accuracy in time and the latter second-order accuracy in time. Besides, the former scheme preserves the energy dissipation law asymptotically. We validate these results through numerical experiments, and also compare the efficiency of our schemes with the standard five-point scheme, demonstrating that our approaches effectively reduce computational costs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.