Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

One-Way Communication Complexity of Partial XOR Functions (2310.20606v2)

Published 31 Oct 2023 in cs.CC

Abstract: Boolean function $F(x,y)$ for $x,y \in {0,1}n$ is an XOR function if $F(x,y)=f(x\oplus y)$ for some function $f$ on $n$ input bits, where $\oplus$ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing Fourier analytic technique. For total XOR functions it is known that deterministic communication complexity of $F$ is closely related to parity decision tree complexity of $f$. Montanaro and Osbourne (2009) observed that one-sided communication complexity $D_{cc}{\rightarrow}(F)$ of $F$ is exactly equal to nonadaptive parity decision tree complexity $NADT{\oplus}(f)$ of $f$. Hatami et al. (2018) showed that unrestricted communication complexity of $F$ is polynomially related to parity decision tree complexity of $f$. We initiate the studies of a similar connection for partial functions. We show that in case of one-sided communication complexity whether these measures are equal, depends on the number of undefined inputs of $f$. On the one hand, if $D_{cc}{\rightarrow}(F)=t$ and $f$ is undefined on at most $O(\frac{2{n-t}}{\sqrt{n-t}})$, then $NADT{\oplus}(f)=t$. On the other hand, for a wide range of values of $D_{cc}{\rightarrow}(F)$ and $NADT{\oplus}(f)$ (from constant to $n-2$) we provide partial functions for which $D_{cc}{\rightarrow}(F) < NADT{\oplus}(f)$. In particular, we provide a function with an exponential gap between the two measures. Our separation results translate to the case of two-sided communication complexity as well, in particular showing that the result of Hatami et al. (2018) cannot be generalized to partial functions. Previous results for total functions heavily rely on Boolean Fourier analysis and the technique does not translate to partial functions. For the proofs of our results we build a linear algebraic framework instead. Separation results are proved through the reduction to covering codes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.