Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Transformer-Based Model With Self-Distillation for Multimodal Emotion Recognition in Conversations

Published 31 Oct 2023 in cs.AI and cs.MM | (2310.20494v1)

Abstract: Emotion recognition in conversations (ERC), the task of recognizing the emotion of each utterance in a conversation, is crucial for building empathetic machines. Existing studies focus mainly on capturing context- and speaker-sensitive dependencies on the textual modality but ignore the significance of multimodal information. Different from emotion recognition in textual conversations, capturing intra- and inter-modal interactions between utterances, learning weights between different modalities, and enhancing modal representations play important roles in multimodal ERC. In this paper, we propose a transformer-based model with self-distillation (SDT) for the task. The transformer-based model captures intra- and inter-modal interactions by utilizing intra- and inter-modal transformers, and learns weights between modalities dynamically by designing a hierarchical gated fusion strategy. Furthermore, to learn more expressive modal representations, we treat soft labels of the proposed model as extra training supervision. Specifically, we introduce self-distillation to transfer knowledge of hard and soft labels from the proposed model to each modality. Experiments on IEMOCAP and MELD datasets demonstrate that SDT outperforms previous state-of-the-art baselines.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.