Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LAVSS: Location-Guided Audio-Visual Spatial Audio Separation (2310.20446v1)

Published 31 Oct 2023 in cs.SD, cs.CV, cs.MM, and eess.AS

Abstract: Existing machine learning research has achieved promising results in monaural audio-visual separation (MAVS). However, most MAVS methods purely consider what the sound source is, not where it is located. This can be a problem in VR/AR scenarios, where listeners need to be able to distinguish between similar audio sources located in different directions. To address this limitation, we have generalized MAVS to spatial audio separation and proposed LAVSS: a location-guided audio-visual spatial audio separator. LAVSS is inspired by the correlation between spatial audio and visual location. We introduce the phase difference carried by binaural audio as spatial cues, and we utilize positional representations of sounding objects as additional modality guidance. We also leverage multi-level cross-modal attention to perform visual-positional collaboration with audio features. In addition, we adopt a pre-trained monaural separator to transfer knowledge from rich mono sounds to boost spatial audio separation. This exploits the correlation between monaural and binaural channels. Experiments on the FAIR-Play dataset demonstrate the superiority of the proposed LAVSS over existing benchmarks of audio-visual separation. Our project page: https://yyx666660.github.io/LAVSS/.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube