Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A physics-informed GAN Framework based on Model-free Data-Driven Computational Mechanics (2310.20308v1)

Published 31 Oct 2023 in cs.CE

Abstract: Model-free data-driven computational mechanics, first proposed by Kirchdoerfer and Ortiz, replace phenomenological models with numerical simulations based on sample data sets in strain-stress space. In this study, we integrate this paradigm within physics-informed generative adversarial networks (GANs). We enhance the conventional physics-informed neural network framework by implementing the principles of data-driven computational mechanics into GANs. Specifically, the generator is informed by physical constraints, while the discriminator utilizes the closest strain-stress data to discern the authenticity of the generator's output. This combined approach presents a new formalism to harness data-driven mechanics and deep learning to simulate and predict mechanical behaviors.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube