Papers
Topics
Authors
Recent
2000 character limit reached

Contrastive Difference Predictive Coding (2310.20141v2)

Published 31 Oct 2023 in cs.LG and cs.AI

Abstract: Predicting and reasoning about the future lie at the heart of many time-series questions. For example, goal-conditioned reinforcement learning can be viewed as learning representations to predict which states are likely to be visited in the future. While prior methods have used contrastive predictive coding to model time series data, learning representations that encode long-term dependencies usually requires large amounts of data. In this paper, we introduce a temporal difference version of contrastive predictive coding that stitches together pieces of different time series data to decrease the amount of data required to learn predictions of future events. We apply this representation learning method to derive an off-policy algorithm for goal-conditioned RL. Experiments demonstrate that, compared with prior RL methods, ours achieves $2 \times$ median improvement in success rates and can better cope with stochastic environments. In tabular settings, we show that our method is about $20 \times$ more sample efficient than the successor representation and $1500 \times$ more sample efficient than the standard (Monte Carlo) version of contrastive predictive coding.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.