Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-Objective Intrinsic Reward Learning for Conversational Recommender Systems (2310.20109v1)

Published 31 Oct 2023 in cs.IR

Abstract: Conversational Recommender Systems (CRS) actively elicit user preferences to generate adaptive recommendations. Mainstream reinforcement learning-based CRS solutions heavily rely on handcrafted reward functions, which may not be aligned with user intent in CRS tasks. Therefore, the design of task-specific rewards is critical to facilitate CRS policy learning, which remains largely under-explored in the literature. In this work, we propose a novel approach to address this challenge by learning intrinsic rewards from interactions with users. Specifically, we formulate intrinsic reward learning as a multi-objective bi-level optimization problem. The inner level optimizes the CRS policy augmented by the learned intrinsic rewards, while the outer level drives the intrinsic rewards to optimize two CRS-specific objectives: maximizing the success rate and minimizing the number of turns to reach a successful recommendation in conversations. To evaluate the effectiveness of our approach, we conduct extensive experiments on three public CRS benchmarks. The results show that our algorithm significantly improves CRS performance by exploiting informative learned intrinsic rewards.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.