Papers
Topics
Authors
Recent
2000 character limit reached

Vignat: Vulnerability identification by learning code semantics via graph attention networks (2310.20067v1)

Published 30 Oct 2023 in cs.CR and cs.AI

Abstract: Vulnerability identification is crucial to protect software systems from attacks for cyber-security. However, huge projects have more than millions of lines of code, and the complex dependencies make it hard to carry out traditional static and dynamic methods. Furthermore, the semantic structure of various types of vulnerabilities differs greatly and may occur simultaneously, making general rule-based methods difficult to extend. In this paper, we propose \textit{Vignat}, a novel attention-based framework for identifying vulnerabilities by learning graph-level semantic representations of code. We represent codes with code property graphs (CPGs) in fine grain and use graph attention networks (GATs) for vulnerability detection. The results show that Vignat is able to achieve $57.38\%$ accuracy on reliable datasets derived from popular C libraries. Furthermore, the interpretability of our GATs provides valuable insights into vulnerability patterns.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.