Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lyapunov-Based Dropout Deep Neural Network (Lb-DDNN) Controller (2310.19938v1)

Published 30 Oct 2023 in eess.SY, cs.LG, and cs.SY

Abstract: Deep neural network (DNN)-based adaptive controllers can be used to compensate for unstructured uncertainties in nonlinear dynamic systems. However, DNNs are also very susceptible to overfitting and co-adaptation. Dropout regularization is an approach where nodes are randomly dropped during training to alleviate issues such as overfitting and co-adaptation. In this paper, a dropout DNN-based adaptive controller is developed. The developed dropout technique allows the deactivation of weights that are stochastically selected for each individual layer within the DNN. Simultaneously, a Lyapunov-based real-time weight adaptation law is introduced to update the weights of all layers of the DNN for online unsupervised learning. A non-smooth Lyapunov-based stability analysis is performed to ensure asymptotic convergence of the tracking error. Simulation results of the developed dropout DNN-based adaptive controller indicate a 38.32% improvement in the tracking error, a 53.67% improvement in the function approximation error, and 50.44% lower control effort when compared to a baseline adaptive DNN-based controller without dropout regularization.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.