Papers
Topics
Authors
Recent
Search
2000 character limit reached

AMIR: Automated MisInformation Rebuttal -- A COVID-19 Vaccination Datasets based Recommendation System

Published 29 Oct 2023 in cs.AI, cs.IR, and cs.SI | (2310.19834v2)

Abstract: Misinformation has emerged as a major societal threat in recent years in general; specifically in the context of the COVID-19 pandemic, it has wrecked havoc, for instance, by fuelling vaccine hesitancy. Cost-effective, scalable solutions for combating misinformation are the need of the hour. This work explored how existing information obtained from social media and augmented with more curated fact checked data repositories can be harnessed to facilitate automated rebuttal of misinformation at scale. While the ideas herein can be generalized and reapplied in the broader context of misinformation mitigation using a multitude of information sources and catering to the spectrum of social media platforms, this work serves as a proof of concept, and as such, it is confined in its scope to only rebuttal of tweets, and in the specific context of misinformation regarding COVID-19. It leverages two publicly available datasets, viz. FaCov (fact-checked articles) and misleading (social media Twitter) data on COVID-19 Vaccination.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.