Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Conditional gradients for total variation regularization with PDE constraints: a graph cuts approach (2310.19777v2)

Published 30 Oct 2023 in math.OC, cs.NA, math.AP, and math.NA

Abstract: Total variation regularization has proven to be a valuable tool in the context of optimal control of differential equations. This is particularly attributed to the observation that TV-penalties often favor piecewise constant minimizers with well-behaved jumpsets. On the downside, their intricate properties significantly complicate every aspect of their analysis, from the derivation of first-order optimality conditions to their discrete approximation and the choice of a suitable solution algorithm. In this paper, we investigate a general class of minimization problems with TV-regularization, comprising both continuous and discretized control spaces, from a convex geometry perspective. This leads to a variety of novel theoretical insights on minimization problems with total variation regularization as well as tools for their practical realization. First, by studying the extremal points of the respective total variation unit balls, we enable their efficient solution by geometry exploiting algorithms, e.g. fully-corrective generalized conditional gradient methods. We give a detailed account on the practical realization of such a method for piecewise constant finite element approximations of the control on triangulations of the spatial domain. Second, in the same setting and for suitable sequences of uniformly refined meshes, it is shown that minimizers to discretized PDE-constrained optimal control problems approximate solutions to a continuous limit problem involving an anisotropic total variation reflecting the fine-scale geometry of the mesh.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.