Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A nonlinear spectral core-periphery detection method for multiplex networks (2310.19697v2)

Published 30 Oct 2023 in math.NA, cs.NA, cs.SI, and physics.soc-ph

Abstract: Core-periphery detection aims to separate the nodes of a complex network into two subsets: a core that is densely connected to the entire network and a periphery that is densely connected to the core but sparsely connected internally. The definition of core-periphery structure in multiplex networks that record different types of interactions between the same set of nodes on different layers is nontrivial since a node may belong to the core in some layers and to the periphery in others. We propose a nonlinear spectral method for multiplex networks that simultaneously optimises a node and a layer coreness vector by maximising a suitable nonconvex homogeneous objective function by a provably convergent alternating fixed point iteration. We derive a quantitative measure for the quality of a given multiplex core-periphery structure that allows the determination of the optimal core size. Numerical experiments on synthetic and real-world networks illustrate that our approach is robust against noisy layers and significantly outperforms baseline methods while improving the latter with our novel optimised layer coreness weights. As the runtime of our method depends linearly on the number of edges of the network it is scalable to large-scale multiplex networks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.