Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-parametric regression for robot learning on manifolds (2310.19561v2)

Published 30 Oct 2023 in cs.RO and cs.LG

Abstract: Many of the tools available for robot learning were designed for Euclidean data. However, many applications in robotics involve manifold-valued data. A common example is orientation; this can be represented as a 3-by-3 rotation matrix or a quaternion, the spaces of which are non-Euclidean manifolds. In robot learning, manifold-valued data are often handled by relating the manifold to a suitable Euclidean space, either by embedding the manifold or by projecting the data onto one or several tangent spaces. These approaches can result in poor predictive accuracy, and convoluted algorithms. In this paper, we propose an "intrinsic" approach to regression that works directly within the manifold. It involves taking a suitable probability distribution on the manifold, letting its parameter be a function of a predictor variable, such as time, then estimating that function non-parametrically via a "local likelihood" method that incorporates a kernel. We name the method kernelised likelihood estimation. The approach is conceptually simple, and generally applicable to different manifolds. We implement it with three different types of manifold-valued data that commonly appear in robotics applications. The results of these experiments show better predictive accuracy than projection-based algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primitives: learning attractor models for motor behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.
  2. E. Todorov and M. I. Jordan, “Optimal feedback control as a theory of motor coordination,” Nature neuroscience, vol. 5, no. 11, pp. 1226–1235, 2002.
  3. D. Parent, A. Colomé, and C. Torras, “Variable impedance control in cartesian latent space while avoiding obstacles in null space,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 9888–9894.
  4. Q. Cheng, W. Zhang, H. Liu, Y. Zhang, and L. Hao, “Research on the path planning algorithm of a manipulator based on GMM/GMR-MPRM,” Applied Sciences, vol. 11, no. 16, p. 7599, 2021.
  5. K. T. Ly, M. Poozhiyil, H. Pandya, G. Neumann, and A. Kucukyilmaz, “Intent-aware predictive haptic guidance and its application to shared control teleoperation,” in 2021 30th IEEE international conference on robot & human interactive communication (RO-MAN).   IEEE, 2021, pp. 565–572.
  6. D. Cohn, Z. Ghahramani, and M. Jordan, “Active learning with statistical models,” Journal of artificial intelligence research, vol. 4, pp. 129–145, 1996.
  7. S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing a task in a humanoid robot,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pp. 286–298, 2007.
  8. A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic movement primitives,” Advances in neural information processing systems, vol. 26, 2013.
  9. Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell, “Kernelized movement primitives,” The International Journal of Robotics Research, vol. 38, no. 7, pp. 833–852, 2019.
  10. P. C. López-Custodio, R. Fu, J. S. Dai, and Y. Jin, “Compliance model of Exechon manipulators with an offset wrist,” Mechanism and Machine Theory, vol. 167, p. 104558, 2022.
  11. X. Pennec, “Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements,” Journal of Mathematical Imaging and Vision, vol. 25, pp. 127–154, 2006.
  12. S. Said, L. Bombrun, Y. Berthoumieu, and J. Manton, “Riemannian Gaussian distributions on the space of symmetric positive definite matrices,” IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 2153–2170, 2017.
  13. Y. Huang, F. Abu-Dakka, J. Silvério, and D. Caldwell, “Toward orientation learning and adaptation in cartesian space,” IEEE Transactions on Robotics, vol. 37, no. 1, pp. 82–98, 2020.
  14. W. Wang, M. Saveriano, and F. Abu-Dakka, “Learning deep robotic skills on Riemannian manifolds,” IEEE Access, vol. 10, pp. 114 143–114 152, 2022.
  15. M. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. Caldwell, “An approach for imitation learning on Riemannian manifolds,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1240–1247, 2017.
  16. S. Kim, R. Haschke, and H. Ritter, “Gaussian mixture model for 3-DOF orientations,” Robotics and Autonomous Systems, vol. 87, pp. 28–37, 2017.
  17. N. Jaquier, L. Rozo, D. Caldwell, and S. Calinon, “Geometry-aware manipulability learning, tracking, and transfer,” The International Journal of Robotics Research, vol. 40, no. 2-3, pp. 624–650, 2021.
  18. A. Reithmeir, L. Figueredo, and S. Haddadin, “Human-to-robot manipulability domain adaptation with parallel transport and manifold-aware ICP,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 5218–5225.
  19. M. J. Zeestraten, I. Havoutis, S. Calinon, and D. G. Caldwell, “Learning task-space synergies using Riemannian geometry,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 73–78.
  20. M. Devanne, O. Rémy-Néris, B. Le Gals-Garnett, G. Kermarrec, and A. Thepaut, “A co-design approach for a rehabilitation robot coach for physical rehabilitation based on the error classification of motion errors,” in 2018 Second IEEE International Conference on Robotic Computing (IRC).   IEEE, 2018, pp. 352–357.
  21. A. Ude, B. Nemec, T. Petrić, and J. Morimoto, “Orientation in cartesian space dynamic movement primitives,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 2997–3004.
  22. L. Koutras and Z. Doulgeri, “A correct formulation for the orientation dynamic movement primitives for robot control in the cartesian space,” in Conference on robot learning.   PMLR, 2020, pp. 293–302.
  23. M. Saveriano, F. Franzel, and D. Lee, “Merging position and orientation motion primitives,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 7041–7047.
  24. L. Rozo and V. Dave, “Orientation probabilistic movement primitives on Riemannian manifolds,” in Conference on Robot Learning.   PMLR, 2022, pp. 373–383.
  25. N. Jaquier, L. Rozo, and T. Asfour, “Unraveling the single tangent space fallacy: An analysis and clarification for applying Riemannian geometry in robot learning,” 2024.
  26. D. E. Tyler, “Statistical analysis for the angular central Gaussian distribution on the sphere,” Biometrika, vol. 74, no. 3, pp. 579–589, 1987.
  27. C. Bingham, “An antipodally symmetric distribution on the sphere,” The Annals of Statistics, pp. 1201–1225, 1974.
  28. S. Riedel, Z.-C. Marton, and S. Kriegel, “Multi-view orientation estimation using Bingham mixture models,” in 2016 IEEE international conference on automation, quality and testing, robotics (AQTR).   IEEE, 2016, pp. 1–6.
  29. S. James and P. Abbeel, “Bingham policy parameterization for 3d rotations in reinforcement learning,” arXiv preprint arXiv:2202.03957, 2022.
  30. J. Staniswalis, “The kernel estimate of a regression function in likelihood-based models,” Journal of the American Statistical Association, vol. 84, no. 405, pp. 276–283, 1989.
  31. R. Tibshirani and T. Hastie, “Local likelihood estimation,” Journal of the American Statistical Association, vol. 82, no. 398, pp. 559–567, 1987.
  32. A. Lou, D. Lim, I. Katsman, L. Huang, Q. Jiang, S. N. Lim, and C. M. De Sa, “Neural manifold ordinary differential equations,” Advances in Neural Information Processing Systems, vol. 33, pp. 17 548–17 558, 2020.
  33. C.-W. Huang, M. Aghajohari, J. Bose, P. Panangaden, and A. C. Courville, “Riemannian diffusion models,” Advances in Neural Information Processing Systems, vol. 35, pp. 2750–2761, 2022.
  34. S. Yoon, Y.-U. Jin, Y.-K. Noh, and F. Park, “Energy-based models for anomaly detection: A manifold diffusion recovery approach,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  35. V. Borovitskiy, A. Terenin, P. Mostowsky, and M. Deisenroth, “Matérn Gaussian processes on Riemannian manifolds,” Advances in Neural Information Processing Systems, vol. 33, pp. 12 426–12 437, 2020.
  36. N. Jaquier, V. Borovitskiy, A. Smolensky, A. Terenin, T. Asfour, and L. Rozo, “Geometry-aware Bayesian optimization in robotics using Riemannian Matérn kernels,” 2023.
  37. A. Mallasto and A. Feragen, “Wrapped Gaussian process regression on Riemannian manifolds,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5580–5588.
  38. S. Calinon, “Gaussians on Riemannian manifolds: Applications for robot learning and adaptive control,” IEEE Robotics & Automation Magazine, vol. 27, no. 2, pp. 33–45, 2020.
  39. J. Hervé, “Analyse structurelle des mécanismes par groupe des déplacements,” Mechanism and Machine Theory, vol. 13, no. 4, pp. 437–450, 1978.
  40. P. Paine, S. Preston, M. Tsagris, and A. Wood, “An elliptically symmetric angular Gaussian distribution,” Statistics and Computing, vol. 28, pp. 689–697, 2018.
  41. A. Schwartzman, “Lognormal distributions and geometric averages of symmetric positive definite matrices,” International Statistical Review, vol. 84, no. 3, pp. 456–486, 2016.
  42. E. A. Nadaraya, “On estimating regression,” Theory of Probability & Its Applications, vol. 9, no. 1, pp. 141–142, 1964.
  43. G. S. Watson, “Smooth regression analysis,” Sankhya: The Indian Journal of Statistics, Series A (1961-2002), vol. 26, no. 4, pp. 359–372, 1964.
  44. H. Perez-Villeda, J. Piater, and M. Saveriano, “Learning and extrapolation of robotic skills using task-parameterized equation learner networks,” Robotics and Autonomous Systems, vol. 160, p. 104309, 2023.
  45. S. Calinon, “Pbdlib matlab,” https://gitlab.idiap.ch/rli/pbdlib-matlab/, 2019, accessed: 09-2023.
  46. ——, “A tutorial on task-parameterized movement learning and retrieval,” Intelligent service robotics, vol. 9, pp. 1–29, 2016.
  47. Franka Emika GmbH, “Franka Control Interface: Robot and interface specifications,” https://frankaemika.github.io/docs/control_parameters.html, 2017, accessed: 09-2023.
  48. Y. Huang, “robinfLib Matlab,” https://github.com/yanlongtu/robInfLib-matlab, 2021, accessed: 04-2024.
  49. F. Nielsen, “A simple approximation method for the Fisher-Rao distance between multivariate normal distributions,” Entropy, vol. 25, no. 4, 2023. [Online]. Available: 4
  50. A. Bertomeu-Motos, A. Blanco, F. J. Badesa, J. A. Barios, L. Zollo, and N. Garcia-Aracil, “Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices,” Journal of NeuroEngineering and Rehabilitation, vol. 15, p. 11 pages, 2018.
  51. A. M. Zanchettin, P. Rocco, L. Bascetta, I. Symeonidis, and S. Peldschus, “Kinematic motion analysis of the human arm during a manipulation task,” in ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), 2010, pp. 1–6.
  52. Q. Li, Y. Xia, X. Wang, P. Xin, W. Chen, and C. Xiong, “Muscle-effort-minimization-inspired kinematic redundancy resolution for replicating natural posture of human arm,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2341–2351, 2022.
  53. G. Wu, F. van der Helm, H. (DirkJan) Veeger, M. Makhsous, P. Van Roy, C. Anglin, J. Nagels, A. R. Karduna, K. McQuade, X. Wang, F. W. Werner, and B. Buchholz, “ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand,” Journal of Biomechanics, vol. 38, no. 5, pp. 981–992, 2005.
  54. F. C. Park, “Distance metrics on the rigid-body motions with applications to mechanism design,” Journal of Mechanical Design, vol. 117, no. 1, pp. 48–54, 03 1995.
  55. S. Felton, É. Fromont, and E. Marchand, “Deep metric learning for visual servoing: when pose and image meet in latent space,” in IEEE Int. Conf. on Robotics and Automation, 2023, pp. 741–747.
  56. J. M. R. Martinez and J. Duffy, “On the metrics of rigid body displacements for infinite and finite bodies,” Journal of Mechanical Design, vol. 117, no. 1, pp. 41–47, 03 1995.
  57. Y. He and S. Liu, “Analytical inverse kinematics for Franka Emika Panda – a geometrical solver for 7-DOF manipulators with unconventional design,” in 2021 9th International Conference on Control, Mechatronics and Automation (ICCMA), 2021, pp. 194–199.
  58. J. T. Kent, “The Fisher-Bingham distribution on the sphere,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 44, no. 1, pp. 71–80, 1982.
  59. K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Technical University of Denmark, vol. 7, no. 15, p. 510, 2008.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. P. C. Lopez-Custodio (2 papers)
  2. K. Bharath (1 paper)
  3. A. Kucukyilmaz (1 paper)
  4. S. P. Preston (1 paper)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com