Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MENTOR: Human Perception-Guided Pretraining for Increased Generalization (2310.19545v3)

Published 30 Oct 2023 in cs.CV

Abstract: Leveraging human perception into training of convolutional neural networks (CNN) has boosted generalization capabilities of such models in open-set recognition tasks. One of the active research questions is where (in the model architecture or training pipeline) and how to efficiently incorporate always limited human perceptual data into training strategies of models. In this paper, we introduce MENTOR (huMan pErceptioN-guided preTraining fOr increased geneRalization), which addresses this question through two unique rounds of training CNNs tasked with open-set anomaly detection. First, we train an autoencoder to learn human saliency maps given an input image, without any class labels. The autoencoder is thus tasked with discovering domain-specific salient features which mimic human perception. Second, we remove the decoder part, add a classification layer on top of the encoder, and train this new model conventionally, now using class labels. We show that MENTOR successfully raises the generalization performance across three different CNN backbones in a variety of anomaly detection tasks (demonstrated for detection of unknown iris presentation attacks, synthetically-generated faces, and anomalies in chest X-ray images) compared to traditional pretraining methods (e.g., sourcing the weights from ImageNet), and as well as state-of-the-art methods that incorporate human perception guidance into training. In addition, we demonstrate that MENTOR can be flexibly applied to existing human perception-guided methods and subsequently increasing their generalization with no architectural modifications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube