Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Progressive Neural Network for Multi-Horizon Time Series Forecasting (2310.19322v2)

Published 30 Oct 2023 in cs.LG

Abstract: In this paper, we introduce ProNet, an novel deep learning approach designed for multi-horizon time series forecasting, adaptively blending autoregressive (AR) and non-autoregressive (NAR) strategies. Our method involves dividing the forecasting horizon into segments, predicting the most crucial steps in each segment non-autoregressively, and the remaining steps autoregressively. The segmentation process relies on latent variables, which effectively capture the significance of individual time steps through variational inference. In comparison to AR models, ProNet showcases remarkable advantages, requiring fewer AR iterations, resulting in faster prediction speed, and mitigating error accumulation. On the other hand, when compared to NAR models, ProNet takes into account the interdependency of predictions in the output space, leading to improved forecasting accuracy. Our comprehensive evaluation, encompassing four large datasets, and an ablation study, demonstrate the effectiveness of ProNet, highlighting its superior performance in terms of accuracy and prediction speed, outperforming state-of-the-art AR and NAR forecasting models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.