Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

iSNEAK: Partial Ordering as Heuristics for Model-Based Reasoning in Software Engineering (2310.19125v2)

Published 29 Oct 2023 in cs.SE

Abstract: A "partial ordering" is a way to heuristically order a set of examples (partial orderings are a set where, for certain pairs of elements, one precedes the other). While these orderings may only be approximate, they can be useful for guiding a search towards better regions of the data. To illustrate the value of that technique, this paper presents iSNEAK, an incremental human-in-the-loop AI problem solver. iSNEAK uses partial orderings and feedback from humans to prune the space of options. Further, in experiments with a dozen software models of increasing size and complexity (with up to 10,000 variables), iSNEAK only asked a handful of questions to return human-acceptable solutions that outperformed the prior state-of-the-art. We propose the use of partial orderings and tools like iSNEAK to solve the information overload problem where human experts grow fatigued and make mistakes when they are asked too many questions. iSNEAK mitigates the information overload problem since it allows humans to explore complex problem spaces in far less time, with far less effort.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.