Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Near-Optimal Packet Scheduling in Multihop Networks with End-to-End Deadline Constraints (2310.19077v1)

Published 29 Oct 2023 in cs.NI and math.OC

Abstract: Scheduling packets with end-to-end deadline constraints in multihop networks is an important problem that has been notoriously difficult to tackle. Recently, there has been progress on this problem in the worst-case traffic setting, with the objective of maximizing the number of packets delivered within their deadlines. Specifically, the proposed algorithms were shown to achieve $\Omega(1/\log(L))$ fraction of the optimal objective value if the minimum link capacity in the network is $C_{\min}=\Omega(\log (L))$, where $L$ is the maximum length of a packet's route in the network (which is bounded by the packet's maximum deadline). However, such guarantees can be quite pessimistic due to the strict worst-case traffic assumption and may not accurately reflect real-world settings. In this work, we aim to address this limitation by exploring whether it is possible to design algorithms that achieve a constant fraction of the optimal value while relaxing the worst-case traffic assumption. We provide a positive answer by demonstrating that in stochastic traffic settings, such as i.i.d. packet arrivals, near-optimal, $(1-\epsilon)$-approximation algorithms can be designed if $C_{\min} = \Omega\big(\frac{\log (L/\epsilon) } {\epsilon2}\big)$. To the best of our knowledge, this is the first result that shows this problem can be solved near-optimally under nontrivial assumptions on traffic and link capacity. We further present extended simulations using real network traces with non-stationary traffic, which demonstrate that our algorithms outperform worst-case-based algorithms in practical settings.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.