Papers
Topics
Authors
Recent
2000 character limit reached

Apple Tasting: Combinatorial Dimensions and Minimax Rates (2310.19064v3)

Published 29 Oct 2023 in cs.LG and stat.ML

Abstract: In online binary classification under \emph{apple tasting} feedback, the learner only observes the true label if it predicts ``1". First studied by \cite{helmbold2000apple}, we revisit this classical partial-feedback setting and study online learnability from a combinatorial perspective. We show that the Littlestone dimension continues to provide a tight quantitative characterization of apple tasting in the agnostic setting, closing an open question posed by \cite{helmbold2000apple}. In addition, we give a new combinatorial parameter, called the Effective width, that tightly quantifies the minimax expected mistakes in the realizable setting. As a corollary, we use the Effective width to establish a \emph{trichotomy} of the minimax expected number of mistakes in the realizable setting. In particular, we show that in the realizable setting, the expected number of mistakes of any learner, under apple tasting feedback, can be $\Theta(1), \Theta(\sqrt{T})$, or $\Theta(T)$. This is in contrast to the full-information realizable setting where only $\Theta(1)$ and $\Theta(T)$ are possible.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 9 likes about this paper.