Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Weisfeiler-Leman Dimension of Conjunctive Queries (2310.19006v2)

Published 29 Oct 2023 in cs.DM, cs.DB, and cs.LO

Abstract: The Weisfeiler-Leman (WL) dimension of a graph parameter $f$ is the minimum $k$ such that, if $G_1$ and $G_2$ are indistinguishable by the $k$-dimensional WL-algorithm then $f(G_1)=f(G_2)$. The WL-dimension of $f$ is $\infty$ if no such $k$ exists. We study the WL-dimension of graph parameters characterised by the number of answers from a fixed conjunctive query to the graph. Given a conjunctive query $\varphi$, we quantify the WL-dimension of the function that maps every graph $G$ to the number of answers of $\varphi$ in $G$. The works of Dvor\'ak (J. Graph Theory 2010), Dell, Grohe, and Rattan (ICALP 2018), and Neuen (ArXiv 2023) have answered this question for full conjunctive queries, which are conjunctive queries without existentially quantified variables. For such queries $\varphi$, the WL-dimension is equal to the treewidth of the Gaifman graph of $\varphi$. In this work, we give a characterisation that applies to all conjunctive qureies. Given any conjunctive query $\varphi$, we prove that its WL-dimension is equal to the semantic extension width $\mathsf{sew}(\varphi)$, a novel width measure that can be thought of as a combination of the treewidth of $\varphi$ and its quantified star size, an invariant introduced by Durand and Mengel (ICDT 2013) describing how the existentially quantified variables of $\varphi$ are connected with the free variables. Using the recently established equivalence between the WL-algorithm and higher-order Graph Neural Networks (GNNs) due to Morris et al. (AAAI 2019), we obtain as a consequence that the function counting answers to a conjunctive query $\varphi$ cannot be computed by GNNs of order smaller than $\mathsf{sew}(\varphi)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24(13):i241–i249, 07 2008.
  2. Vikraman Arvind. The Weisfeiler-Lehman Procedure. Bull. EATCS, 120, 2016. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/442.
  3. On the weisfeiler-leman dimension of fractional packing. Inf. Comput., 288:104803, 2022. doi:10.1016/j.ic.2021.104803.
  4. Graph neural networks with local graph parameters. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 25280–25293, 2021.
  5. Hans L. Bodlaender. Necessary edges in k-chordalisations of graphs. J. Comb. Optim., 7(3):283–290, 2003. doi:10.1023/A:1027320705349.
  6. Hans L. Bodlaender and Arie M. C. A. Koster. Safe separators for treewidth. Discret. Math., 306(3):337–350, 2006. doi:10.1016/j.disc.2005.12.017.
  7. Jan Böker. Color refinement, homomorphisms, and hypergraphs. In Ignasi Sau and Dimitrios M. Thilikos, editors, Graph-Theoretic Concepts in Computer Science - 45th International Workshop, WG 2019, Vall de Núria, Spain, June 19-21, 2019, Revised Papers, volume 11789 of Lecture Notes in Computer Science, pages 338–350. Springer, 2019. doi:10.1007/978-3-030-30786-8_26.
  8. Improving graph neural network expressivity via subgraph isomorphism counting. IEEE Trans. Pattern Anal. Mach. Intell., 45(1):657–668, 2023. doi:10.1109/TPAMI.2022.3154319.
  9. Fractional Homomorphism, Weisfeiler-Leman Invariance, and the Sherali-Adams Hierarchy for the Constraint Satisfaction Problem. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 27:1–27:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.27.
  10. An optimal lower bound on the number of variables for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.
  11. A trichotomy in the complexity of counting answers to conjunctive queries. In Marcelo Arenas and Martín Ugarte, editors, 18th International Conference on Database Theory, ICDT 2015, March 23-27, 2015, Brussels, Belgium, volume 31 of LIPIcs, pages 110–126. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.ICDT.2015.110.
  12. Counting answers to existential positive queries: A complexity classification. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 315–326. ACM, 2016. doi:10.1145/2902251.2902279.
  13. Can graph neural networks count substructures? In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/75877cb75154206c4e65e76b88a12712-Abstract.html.
  14. Homomorphisms are a good basis for counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223. ACM, 2017. doi:10.1145/3055399.3055502.
  15. Lovász-Type Theorems and Game Comonads. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470609.
  16. Lovász meets weisfeiler and leman. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 40:1–40:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.40.
  17. Counting answers to existential questions. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 113:1–113:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.113.
  18. Counting answers to existential questions. CoRR, abs/1902.04960, 2019. URL: http://arxiv.org/abs/1902.04960, arXiv:1902.04960.
  19. Tree-decompositions with bags of small diameter. Discret. Math., 307(16):2008–2029, 2007. doi:10.1016/j.disc.2005.12.060.
  20. Structural tractability of counting of solutions to conjunctive queries. Theory Comput. Syst., 57(4):1202–1249, 2015. doi:10.1007/s00224-014-9543-y.
  21. Zdenek Dvorák. On recognizing graphs by numbers of homomorphisms. J. Graph Theory, 64(4):330–342, 2010. doi:10.1002/jgt.20461.
  22. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.
  23. Martin Fürer. Weisfeiler-lehman refinement requires at least a linear number of iterations. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 322–333. Springer, 2001. doi:10.1007/3-540-48224-5_27.
  24. Martin Grohe. The logic of graph neural networks. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–17. IEEE, 2021. doi:10.1109/LICS52264.2021.9470677.
  25. Color Refinement and Its Applications. In An Introduction to Lifted Probabilistic Inference. The MIT Press, 08 2021. arXiv:https://direct.mit.edu/book/chapter-pdf/2101088/c025000_9780262365598.pdf, doi:10.7551/mitpress/10548.003.0023.
  26. Describing Graphs: A First-Order Approach to Graph Canonization, pages 59–81. Springer New York, New York, NY, 1990. doi:10.1007/978-1-4612-4478-3_5.
  27. Network global testing by counting graphlets. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 2338–2346. PMLR, 2018. URL: http://proceedings.mlr.press/v80/jin18b.html.
  28. On the power of the weisfeiler-leman test for graph motif parameters. CoRR, abs/2309.17053, 2023. arXiv:2309.17053, doi:10.48550/arXiv.2309.17053.
  29. László Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications. American Mathematical Society, 2012.
  30. Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 661–672. IEEE, 2020. doi:10.1109/FOCS46700.2020.00067.
  31. Network Motifs: Simple Building Blocks of Complex Networks. Science, 298(5594):824–827, 2002.
  32. Weisfeiler and leman go sparse: Towards scalable higher-order graph embeddings. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.
  33. Weisfeiler and leman go neural: Higher-order graph neural networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4602–4609. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33014602.
  34. Daniel Neuen. Homomorphism-distinguishing closedness for graphs of bounded tree-width. arXiv preprint arXiv:2304.07011, 2023.
  35. Tractable counting of the answers to conjunctive queries. J. Comput. Syst. Sci., 79(6):984–1001, 2013. doi:10.1016/j.jcss.2013.01.012.
  36. David E Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree. arXiv preprint arXiv:2206.10321, 2022.
  37. Counting homomorphisms from hypergraphs of bounded generalised hypertree width: A logical characterisation. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume 272 of LIPIcs, pages 79:1–79:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.MFCS.2023.79.
  38. Tim Seppelt. Logical equivalences, homomorphism indistinguishability, and forbidden minors. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume 272 of LIPIcs, pages 82:1–82:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.MFCS.2023.82.
  39. Gottfried Tinhofer. Graph isomorphism and theorems of birkhoff type. Computing, 36(4):285–300, 1986. doi:10.1007/BF02240204.
  40. Gottfried Tinhofer. A note on compact graphs. Discret. Appl. Math., 30(2-3):253–264, 1991. doi:10.1016/0166-218X(91)90049-3.
  41. The reduction of a graph to canonical form and the algebra which appears therein. NTI, Series, 2(9):12–16, 1968. English translation by G. Ryabov available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.
  42. How powerful are graph neural networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL: https://openreview.net/forum?id=ryGs6iA5Km.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Andreas Göbel (28 papers)
  2. Leslie Ann Goldberg (81 papers)
  3. Marc Roth (26 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.