Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A transfer learning approach with convolutional neural network for Face Mask Detection (2310.18928v1)

Published 29 Oct 2023 in cs.CV and cs.LG

Abstract: Due to the epidemic of the coronavirus (Covid-19) and its rapid spread around the world, the world has faced an enormous crisis. To prevent the spread of the coronavirus, the World Health Organization (WHO) has introduced the use of masks and keeping social distance as the best preventive method. So, developing an automatic monitoring system for detecting facemasks in some crowded places is essential. To do this, we propose a mask recognition system based on transfer learning and Inception v3 architecture. In the proposed method, two datasets are used simultaneously for training including the Simulated Mask Face Dataset (SMFD) and MaskedFace-Net (MFN) This paper tries to increase the accuracy of the proposed system by optimally setting hyper-parameters and accurately designing the fully connected layers. The main advantage of the proposed method is that in addition to masked and unmasked faces, it can also detect cases of incorrect use of mask. Therefore, the proposed method classifies the input face images into three categories. Experimental results show the high accuracy and efficiency of the proposed method; so, this method has achieved an accuracy of 99.47% and 99.33% in training and test data respectively

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube