Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Exploring Data Augmentations on Self-/Semi-/Fully- Supervised Pre-trained Models (2310.18850v1)

Published 28 Oct 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Data augmentation has become a standard component of vision pre-trained models to capture the invariance between augmented views. In practice, augmentation techniques that mask regions of a sample with zero/mean values or patches from other samples are commonly employed in pre-trained models with self-/semi-/fully-supervised contrastive losses. However, the underlying mechanism behind the effectiveness of these augmentation techniques remains poorly explored. To investigate the problems, we conduct an empirical study to quantify how data augmentation affects performance. Concretely, we apply 4 types of data augmentations termed with Random Erasing, CutOut, CutMix and MixUp to a series of self-/semi-/fully- supervised pre-trained models. We report their performance on vision tasks such as image classification, object detection, instance segmentation, and semantic segmentation. We then explicitly evaluate the invariance and diversity of the feature embedding. We observe that: 1) Masking regions of the images decreases the invariance of the learned feature embedding while providing a more considerable diversity. 2) Manual annotations do not change the invariance or diversity of the learned feature embedding. 3) The MixUp approach improves the diversity significantly, with only a marginal decrease in terms of the invariance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.