Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D Object Detection (2310.18620v2)

Published 28 Oct 2023 in cs.CV

Abstract: Monocular 3D object detection (M3OD) is a significant yet inherently challenging task in autonomous driving due to absence of explicit depth cues in a single RGB image. In this paper, we strive to boost currently underperforming monocular 3D object detectors by leveraging an abundance of unlabelled data via semi-supervised learning. Our proposed ODM3D framework entails cross-modal knowledge distillation at various levels to inject LiDAR-domain knowledge into a monocular detector during training. By identifying foreground sparsity as the main culprit behind existing methods' suboptimal training, we exploit the precise localisation information embedded in LiDAR points to enable more foreground-attentive and efficient distillation via the proposed BEV occupancy guidance mask, leading to notably improved knowledge transfer and M3OD performance. Besides, motivated by insights into why existing cross-modal GT-sampling techniques fail on our task at hand, we further design a novel cross-modal object-wise data augmentation strategy for effective RGB-LiDAR joint learning. Our method ranks 1st in both KITTI validation and test benchmarks, significantly surpassing all existing monocular methods, supervised or semi-supervised, on both BEV and 3D detection metrics.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.