Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Anaphor Assisted Document-Level Relation Extraction (2310.18604v1)

Published 28 Oct 2023 in cs.CL

Abstract: Document-level relation extraction (DocRE) involves identifying relations between entities distributed in multiple sentences within a document. Existing methods focus on building a heterogeneous document graph to model the internal structure of an entity and the external interaction between entities. However, there are two drawbacks in existing methods. On one hand, anaphor plays an important role in reasoning to identify relations between entities but is ignored by these methods. On the other hand, these methods achieve cross-sentence entity interactions implicitly by utilizing a document or sentences as intermediate nodes. Such an approach has difficulties in learning fine-grained interactions between entities across different sentences, resulting in sub-optimal performance. To address these issues, we propose an Anaphor-Assisted (AA) framework for DocRE tasks. Experimental results on the widely-used datasets demonstrate that our model achieves a new state-of-the-art performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.