Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

End-to-end Feature Selection Approach for Learning Skinny Trees (2310.18542v3)

Published 28 Oct 2023 in cs.LG

Abstract: We propose a new optimization-based approach for feature selection in tree ensembles, an important problem in statistics and machine learning. Popular tree ensemble toolkits e.g., Gradient Boosted Trees and Random Forests support feature selection post-training based on feature importance scores, while very popular, they are known to have drawbacks. We propose Skinny Trees: an end-to-end toolkit for feature selection in tree ensembles where we train a tree ensemble while controlling the number of selected features. Our optimization-based approach learns an ensemble of differentiable trees, and simultaneously performs feature selection using a grouped $\ell_0$-regularizer. We use first-order methods for optimization and present convergence guarantees for our approach. We use a dense-to-sparse regularization scheduling scheme that can lead to more expressive and sparser tree ensembles. On 15 synthetic and real-world datasets, Skinny Trees can achieve $1.5!\times! -~620~!\times!$ feature compression rates, leading up to $10\times$ faster inference over dense trees, without any loss in performance. Skinny Trees lead to superior feature selection than many existing toolkits e.g., in terms of AUC performance for 25\% feature budget, Skinny Trees outperforms LightGBM by $10.2\%$ (up to $37.7\%$), and Random Forests by $3\%$ (up to $12.5\%$).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.