Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

MixRep: Hidden Representation Mixup for Low-Resource Speech Recognition (2310.18450v1)

Published 27 Oct 2023 in eess.AS and cs.AI

Abstract: In this paper, we present MixRep, a simple and effective data augmentation strategy based on mixup for low-resource ASR. MixRep interpolates the feature dimensions of hidden representations in the neural network that can be applied to both the acoustic feature input and the output of each layer, which generalizes the previous MixSpeech method. Further, we propose to combine the mixup with a regularization along the time axis of the input, which is shown as complementary. We apply MixRep to a Conformer encoder of an E2E LAS architecture trained with a joint CTC loss. We experiment on the WSJ dataset and subsets of the SWB dataset, covering reading and telephony conversational speech. Experimental results show that MixRep consistently outperforms other regularization methods for low-resource ASR. Compared to a strong SpecAugment baseline, MixRep achieves a +6.5\% and a +6.7\% relative WER reduction on the eval92 set and the Callhome part of the eval'2000 set.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: