Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unsupervised Learning of Molecular Embeddings for Enhanced Clustering and Emergent Properties for Chemical Compounds (2310.18367v1)

Published 25 Oct 2023 in physics.chem-ph, cs.AI, cs.CV, and cs.LG

Abstract: The detailed analysis of molecular structures and properties holds great potential for drug development discovery through machine learning. Developing an emergent property in the model to understand molecules would broaden the horizons for development with a new computational tool. We introduce various methods to detect and cluster chemical compounds based on their SMILES data. Our first method, analyzing the graphical structures of chemical compounds using embedding data, employs vector search to meet our threshold value. The results yielded pronounced, concentrated clusters, and the method produced favorable results in querying and understanding the compounds. We also used natural language description embeddings stored in a vector database with GPT3.5, which outperforms the base model. Thus, we introduce a similarity search and clustering algorithm to aid in searching for and interacting with molecules, enhancing efficiency in chemical exploration and enabling future development of emergent properties in molecular property prediction models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.