Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Learning Based on Randomized Quasi-Monte Carlo Method for Solving Linear Kolmogorov Partial Differential Equation (2310.18100v2)

Published 27 Oct 2023 in math.NA and cs.NA

Abstract: Deep learning algorithms have been widely used to solve linear Kolmogorov partial differential equations~(PDEs) in high dimensions, where the loss function is defined as a mathematical expectation. We propose to use the randomized quasi-Monte Carlo (RQMC) method instead of the Monte Carlo (MC) method for computing the loss function. In theory, we decompose the error from empirical risk minimization~(ERM) into the generalization error and the approximation error. Notably, the approximation error is independent of the sampling methods. We prove that the convergence order of the mean generalization error for the RQMC method is $O(n{-1+\epsilon})$ for arbitrarily small $\epsilon>0$, while for the MC method it is $O(n{-1/2+\epsilon})$ for arbitrarily small $\epsilon>0$. Consequently, we find that the overall error for the RQMC method is asymptotically smaller than that for the MC method as $n$ increases. Our numerical experiments show that the algorithm based on the RQMC method consistently achieves smaller relative $L{2}$ error than that based on the MC method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.