Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DP-SGD with weight clipping (2310.18001v3)

Published 27 Oct 2023 in cs.LG and cs.CR

Abstract: Recently, due to the popularity of deep neural networks and other methods whose training typically relies on the optimization of an objective function, and due to concerns for data privacy, there is a lot of interest in differentially private gradient descent methods. To achieve differential privacy guarantees with a minimum amount of noise, it is important to be able to bound precisely the sensitivity of the information which the participants will observe. In this study, we present a novel approach that mitigates the bias arising from traditional gradient clipping. By leveraging a public upper bound of the Lipschitz value of the current model and its current location within the search domain, we can achieve refined noise level adjustments. We present a new algorithm with improved differential privacy guarantees and a systematic empirical evaluation, showing that our new approach outperforms existing approaches also in practice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.