Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FaultSeg Swin-UNETR: Transformer-Based Self-Supervised Pretraining Model for Fault Recognition (2310.17974v2)

Published 27 Oct 2023 in cs.CV and eess.IV

Abstract: This paper introduces an approach to enhance seismic fault recognition through self-supervised pretraining. Seismic fault interpretation holds great significance in the fields of geophysics and geology. However, conventional methods for seismic fault recognition encounter various issues, including dependence on data quality and quantity, as well as susceptibility to interpreter subjectivity. Currently, automated fault recognition methods proposed based on small synthetic datasets experience performance degradation when applied to actual seismic data. To address these challenges, we have introduced the concept of self-supervised learning, utilizing a substantial amount of relatively easily obtainable unlabeled seismic data for pretraining. Specifically, we have employed the Swin Transformer model as the core network and employed the SimMIM pretraining task to capture unique features related to discontinuities in seismic data. During the fine-tuning phase, inspired by edge detection techniques, we have also refined the structure of the Swin-UNETR model, enabling multiscale decoding and fusion for more effective fault detection. Experimental results demonstrate that our proposed method attains state-of-the-art performance on the Thebe dataset, as measured by the OIS and ODS metrics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.