Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Utilizing Language Models for Energy Load Forecasting (2310.17788v1)

Published 26 Oct 2023 in cs.AI and cs.CL

Abstract: Energy load forecasting plays a crucial role in optimizing resource allocation and managing energy consumption in buildings and cities. In this paper, we propose a novel approach that leverages LLMs for energy load forecasting. We employ prompting techniques to convert energy consumption data into descriptive sentences, enabling fine-tuning of LLMs. By adopting an autoregressive generating approach, our proposed method enables predictions of various horizons of future energy load consumption. Through extensive experiments on real-world datasets, we demonstrate the effectiveness and accuracy of our proposed method. Our results indicate that utilizing LLMs for energy load forecasting holds promise for enhancing energy efficiency and facilitating intelligent decision-making in energy systems.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)