Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Secure short-term load forecasting for smart grids with transformer-based federated learning (2310.17477v1)

Published 26 Oct 2023 in cs.LG

Abstract: Electricity load forecasting is an essential task within smart grids to assist demand and supply balance. While advanced deep learning models require large amounts of high-resolution data for accurate short-term load predictions, fine-grained load profiles can expose users' electricity consumption behaviors, which raises privacy and security concerns. One solution to improve data privacy is federated learning, where models are trained locally on private data, and only the trained model parameters are merged and updated on a global server. Therefore, this paper presents a novel transformer-based deep learning approach with federated learning for short-term electricity load prediction. To evaluate our results, we benchmark our federated learning architecture against central and local learning and compare the performance of our model to long short-term memory models and convolutional neural networks. Our simulations are based on a dataset from a German university campus and show that transformer-based forecasting is a promising alternative to state-of-the-art models within federated learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.