Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fully Dynamic $k$-Clustering in $\tilde O(k)$ Update Time (2310.17420v1)

Published 26 Oct 2023 in cs.DS

Abstract: We present a $O(1)$-approximate fully dynamic algorithm for the $k$-median and $k$-means problems on metric spaces with amortized update time $\tilde O(k)$ and worst-case query time $\tilde O(k2)$. We complement our theoretical analysis with the first in-depth experimental study for the dynamic $k$-median problem on general metrics, focusing on comparing our dynamic algorithm to the current state-of-the-art by Henzinger and Kale [ESA'20]. Finally, we also provide a lower bound for dynamic $k$-median which shows that any $O(1)$-approximate algorithm with $\tilde O(\text{poly}(k))$ query time must have $\tilde \Omega(k)$ amortized update time, even in the incremental setting.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com