Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries (2310.16982v2)

Published 25 Oct 2023 in quant-ph, cond-mat.str-el, cs.IT, hep-th, math.GT, and math.IT

Abstract: We study parallel fault-tolerant quantum computing for families of homological quantum low-density parity-check (LDPC) codes defined on 3-manifolds with constant or almost-constant encoding rate. We derive generic formula for a transversal $T$ gate of color codes on general 3-manifolds, which acts as collective non-Clifford logical CCZ gates on any triplet of logical qubits with their logical-$X$ membranes having a $\mathbb{Z}_2$ triple intersection at a single point. The triple intersection number is a topological invariant, which also arises in the path integral of the emergent higher symmetry operator in a topological quantum field theory: the $\mathbb{Z}_23$ gauge theory. Moreover, the transversal $S$ gate of the color code corresponds to a higher-form symmetry supported on a codimension-1 submanifold, giving rise to exponentially many addressable and parallelizable logical CZ gates. We have developed a generic formalism to compute the triple intersection invariants for 3-manifolds and also study the scaling of the Betti number and systoles with volume for various 3-manifolds, which translates to the encoding rate and distance. We further develop three types of LDPC codes supporting such logical gates: (1) A quasi-hyperbolic code from the product of 2D hyperbolic surface and a circle, with almost-constant rate $k/n=O(1/\log(n))$ and $O(\log(n))$ distance; (2) A homological fibre bundle code with $O(1/\log{\frac{1}{2}}(n))$ rate and $O(\log{\frac{1}{2}}(n))$ distance; (3) A specific family of 3D hyperbolic codes: the Torelli mapping torus code, constructed from mapping tori of a pseudo-Anosov element in the Torelli subgroup, which has constant rate while the distance scaling is currently unknown. We then show a generic constant-overhead scheme for applying a parallelizable universal gate set with the aid of logical-$X$ measurements.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 19 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube