Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MixerFlow: MLP-Mixer meets Normalising Flows (2310.16777v2)

Published 25 Oct 2023 in stat.ML, cs.CV, and cs.LG

Abstract: Normalising flows are generative models that transform a complex density into a simpler density through the use of bijective transformations enabling both density estimation and data generation from a single model. %However, the requirement for bijectivity imposes the use of specialised architectures. In the context of image modelling, the predominant choice has been the Glow-based architecture, whereas alternative architectures remain largely unexplored in the research community. In this work, we propose a novel architecture called MixerFlow, based on the MLP-Mixer architecture, further unifying the generative and discriminative modelling architectures. MixerFlow offers an efficient mechanism for weight sharing for flow-based models. Our results demonstrate comparative or superior density estimation on image datasets and good scaling as the image resolution increases, making MixerFlow a simple yet powerful alternative to the Glow-based architectures. We also show that MixerFlow provides more informative embeddings than Glow-based architectures and can integrate many structured transformations such as splines or Kolmogorov-Arnold Networks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.