Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Achieving Constraints in Neural Networks: A Stochastic Augmented Lagrangian Approach (2310.16647v1)

Published 25 Oct 2023 in cs.LG and math.OC

Abstract: Regularizing Deep Neural Networks (DNNs) is essential for improving generalizability and preventing overfitting. Fixed penalty methods, though common, lack adaptability and suffer from hyperparameter sensitivity. In this paper, we propose a novel approach to DNN regularization by framing the training process as a constrained optimization problem. Where the data fidelity term is the minimization objective and the regularization terms serve as constraints. Then, we employ the Stochastic Augmented Lagrangian (SAL) method to achieve a more flexible and efficient regularization mechanism. Our approach extends beyond black-box regularization, demonstrating significant improvements in white-box models, where weights are often subject to hard constraints to ensure interpretability. Experimental results on image-based classification on MNIST, CIFAR10, and CIFAR100 datasets validate the effectiveness of our approach. SAL consistently achieves higher Accuracy while also achieving better constraint satisfaction, thus showcasing its potential for optimizing DNNs under constrained settings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube