Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DECWA : Density-Based Clustering using Wasserstein Distance (2310.16552v1)

Published 25 Oct 2023 in cs.LG

Abstract: Clustering is a data analysis method for extracting knowledge by discovering groups of data called clusters. Among these methods, state-of-the-art density-based clustering methods have proven to be effective for arbitrary-shaped clusters. Despite their encouraging results, they suffer to find low-density clusters, near clusters with similar densities, and high-dimensional data. Our proposals are a new characterization of clusters and a new clustering algorithm based on spatial density and probabilistic approach. First of all, sub-clusters are built using spatial density represented as probability density function ($p.d.f$) of pairwise distances between points. A method is then proposed to agglomerate similar sub-clusters by using both their density ($p.d.f$) and their spatial distance. The key idea we propose is to use the Wasserstein metric, a powerful tool to measure the distance between $p.d.f$ of sub-clusters. We show that our approach outperforms other state-of-the-art density-based clustering methods on a wide variety of datasets.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.