Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Reinforcement Learning for SBM Graphon Games with Re-Sampling (2310.16326v1)

Published 25 Oct 2023 in cs.GT and cs.LG

Abstract: The Mean-Field approximation is a tractable approach for studying large population dynamics. However, its assumption on homogeneity and universal connections among all agents limits its applicability in many real-world scenarios. Multi-Population Mean-Field Game (MP-MFG) models have been introduced in the literature to address these limitations. When the underlying Stochastic Block Model is known, we show that a Policy Mirror Ascent algorithm finds the MP-MFG Nash Equilibrium. In more realistic scenarios where the block model is unknown, we propose a re-sampling scheme from a graphon integrated with the finite N-player MP-MFG model. We develop a novel learning framework based on a Graphon Game with Re-Sampling (GGR-S) model, which captures the complex network structures of agents' connections. We analyze GGR-S dynamics and establish the convergence to dynamics of MP-MFG. Leveraging this result, we propose an efficient sample-based N-player Reinforcement Learning algorithm for GGR-S without population manipulation, and provide a rigorous convergence analysis with finite sample guarantee.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube