Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

XFEVER: Exploring Fact Verification across Languages (2310.16278v1)

Published 25 Oct 2023 in cs.CL and cs.AI

Abstract: This paper introduces the Cross-lingual Fact Extraction and VERification (XFEVER) dataset designed for benchmarking the fact verification models across different languages. We constructed it by translating the claim and evidence texts of the Fact Extraction and VERification (FEVER) dataset into six languages. The training and development sets were translated using machine translation, whereas the test set includes texts translated by professional translators and machine-translated texts. Using the XFEVER dataset, two cross-lingual fact verification scenarios, zero-shot learning and translate-train learning, are defined, and baseline models for each scenario are also proposed in this paper. Experimental results show that the multilingual LLM can be used to build fact verification models in different languages efficiently. However, the performance varies by language and is somewhat inferior to the English case. We also found that we can effectively mitigate model miscalibration by considering the prediction similarity between the English and target languages. The XFEVER dataset, code, and model checkpoints are available at https://github.com/nii-yamagishilab/xfever.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube