Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Bayesian model calibration framework for stochastic compartmental models with both time-varying and time-invariant parameters (2310.16169v2)

Published 24 Oct 2023 in cs.CE

Abstract: We consider state and parameter estimation for compartmental models having both time-varying and time-invariant parameters. Though the described Bayesian computational framework is general, we look at a specific application to the susceptible-infectious-removed (SIR) model which describes a basic mechanism for the spread of infectious diseases through a system of coupled nonlinear differential equations. The SIR model consists of three states, namely, the three compartments, and two parameters which control the coupling among the states. The deterministic SIR model with time-invariant parameters has shown to be overly simplistic for modelling the complex long-term dynamics of diseases transmission. Recognizing that certain model parameters will naturally vary in time due to seasonal trends, non-pharmaceutical interventions, and other random effects, the estimation procedure must systematically permit these time-varying effects to be captured, without unduly introducing artificial dynamics into the system. To this end, we leverage the robustness of the Markov Chain Monte Carlo (MCMC) algorithm for the estimation of time-invariant parameters alongside nonlinear filters for the joint estimation of the system state and time-varying parameters. We demonstrate performance of the framework by first considering a series of examples using synthetic data, followed by an exposition on public health data collected in the province of Ontario.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.