Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear MIM-width of the Square of Trees (2310.15754v1)

Published 24 Oct 2023 in cs.DM and cs.DS

Abstract: Graph parameters measure the amount of structure (or lack thereof) in a graph that makes it amenable to being decomposed in a way that facilitates dynamic programming. Graph decompositions and their associated parameters are important both in practice (as a tool for designing robust algorithms for NP-hard problems) and in theory (relating large classes of problems to the graphs on which they are solvable in polynomial time). Linear MIM-width is a variant of the graph parameter MIM-width, introduced by Vatshelle. MIM-width is a parameter that is constant for many classes of graphs. Most graph classes which have been shown to have constant MIM-width also have constant linear MIM-width. However, computing the (linear) MIM-width of graphs, or showing that it is hard, has proven to be a huge challenge. To date, the only graph class with unbounded linear MIM-width, whose linear MIM-width can be computed in polynomial time, is the trees. In this follow-up, we show that for any tree $T$ with linear MIM-width $k$, the linear MIM-width of its square $T2$ always lies between $k$ and $2k$, and that these bounds are tight for all $k$.

Summary

We haven't generated a summary for this paper yet.