Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

New approach to template banks of gravitational waves with higher harmonics: Reducing matched-filtering cost by over an order of magnitude (2310.15233v2)

Published 23 Oct 2023 in gr-qc, astro-ph.HE, astro-ph.IM, cs.AI, and cs.LG

Abstract: Searches for gravitational wave events use models, or templates, for the signals of interest. The templates used in current searches in the LIGO-Virgo-Kagra (LVK) data model the dominant quadrupole mode $(\ell,|m|)=(2,2)$ of the signals, and omit sub-dominant higher-order modes (HM) such as $(\ell,|m|)=(3,3)$, $(4,4)$, which are predicted by general relativity. This omission reduces search sensitivity to black hole mergers in interesting parts of parameter space, such as systems with high masses and asymmetric mass-ratios. We develop a new strategy to include HM in template banks: instead of making templates containing a combination of different modes, we separately store normalized templates corresponding to $(2,2)$, $(3,3)$ and $(4,4)$ modes. To model aligned-spin $(3,3)$, $(4,4)$ waveforms corresponding to a given $(2,2)$ waveform, we use a combination of post-Newtonian formulae and machine learning tools. In the matched filtering stage, one can filter each mode separately with the data and collect the timeseries of signal-to-noise ratios (SNR). This leads to a HM template bank whose matched-filtering cost is just $\approx 3\times$ that of a quadrupole-only search (as opposed to $\approx! 100 \times$ in previously proposed HM search methods). Our method is effectual and generally applicable for template banks constructed with either stochastic or geometric placement techniques. New GW candidate events that we detect using our HM banks and details for combining the different SNR mode timeseries are presented in accompanying papers: Wadekar et al. [1] and [2] respectively. Additionally, we discuss non-linear compression of $(2,2)$-only geometric-placement template banks using machine learning algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube