Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Dual-path convolutional neural network using micro-FTIR imaging to predict breast cancer subtypes and biomarkers levels: estrogen receptor, progesterone receptor, HER2 and Ki67 (2310.15099v1)

Published 23 Oct 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Breast cancer molecular subtypes classification plays an import role to sort patients with divergent prognosis. The biomarkers used are Estrogen Receptor (ER), Progesterone Receptor (PR), HER2, and Ki67. Based on these biomarkers expression levels, subtypes are classified as Luminal A (LA), Luminal B (LB), HER2 subtype, and Triple-Negative Breast Cancer (TNBC). Immunohistochemistry is used to classify subtypes, although interlaboratory and interobserver variations can affect its accuracy, besides being a time-consuming technique. The Fourier transform infrared micro-spectroscopy may be coupled with deep learning for cancer evaluation, where there is still a lack of studies for subtypes and biomarker levels prediction. This study presents a novel 2D deep learning approach to achieve these predictions. Sixty micro-FTIR images of 320x320 pixels were collected from a human breast biopsies microarray. Data were clustered by K-means, preprocessed and 32x32 patches were generated using a fully automated approach. CaReNet-V2, a novel convolutional neural network, was developed to classify breast cancer (CA) vs adjacent tissue (AT) and molecular subtypes, and to predict biomarkers level. The clustering method enabled to remove non-tissue pixels. Test accuracies for CA vs AT and subtype were above 0.84. The model enabled the prediction of ER, PR, and HER2 levels, where borderline values showed lower performance (minimum accuracy of 0.54). Ki67 percentage regression demonstrated a mean error of 3.6%. Thus, CaReNet-V2 is a potential technique for breast cancer biopsies evaluation, standing out as a screening analysis technique and helping to prioritize patients.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube