Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Exploring hierarchical framework of nonlinear sparse Bayesian learning algorithm through numerical investigations (2310.14749v1)

Published 23 Oct 2023 in cs.CE

Abstract: Sparse Bayesian learning (SBL) has been extensively utilized in data-driven modeling to combat the issue of overfitting. While SBL excels in linear-in-parameter models, its direct applicability is limited in models where observations possess nonlinear relationships with unknown parameters. Recently, a semi-analytical Bayesian framework known as nonlinear sparse Bayesian learning (NSBL) was introduced by the authors to induce sparsity among model parameters during the Bayesian inversion of nonlinear-in-parameter models. NSBL relies on optimally selecting the hyperparameters of sparsity-inducing Gaussian priors. It is inherently an approximate method since the uncertainty in the hyperparameter posterior is disregarded as we instead seek the maximum a posteriori (MAP) estimate of the hyperparameters (type-II MAP estimate). This paper aims to investigate the hierarchical structure that forms the basis of NSBL and validate its accuracy through a comparison with a one-level hierarchical Bayesian inference as a benchmark in the context of three numerical experiments: (i) a benchmark linear regression example with Gaussian prior and Gaussian likelihood, (ii) the same regression problem with a highly non-Gaussian prior, and (iii) an example of a dynamical system with a non-Gaussian prior and a highly non-Gaussian likelihood function, to explore the performance of the algorithm in these new settings. Through these numerical examples, it can be shown that NSBL is well-suited for physics-based models as it can be readily applied to models with non-Gaussian prior distributions and non-Gaussian likelihood functions. Moreover, we illustrate the accuracy of the NSBL algorithm as an approximation to the one-level hierarchical Bayesian inference and its ability to reduce the computational cost while adequately exploring the parameter posteriors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.