Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Conversational Speech Recognition by Learning Audio-textual Cross-modal Contextual Representation (2310.14278v2)

Published 22 Oct 2023 in cs.SD, cs.CL, and eess.AS

Abstract: Automatic Speech Recognition (ASR) in conversational settings presents unique challenges, including extracting relevant contextual information from previous conversational turns. Due to irrelevant content, error propagation, and redundancy, existing methods struggle to extract longer and more effective contexts. To address this issue, we introduce a novel conversational ASR system, extending the Conformer encoder-decoder model with cross-modal conversational representation. Our approach leverages a cross-modal extractor that combines pre-trained speech and text models through a specialized encoder and a modal-level mask input. This enables the extraction of richer historical speech context without explicit error propagation. We also incorporate conditional latent variational modules to learn conversational level attributes such as role preference and topic coherence. By introducing both cross-modal and conversational representations into the decoder, our model retains context over longer sentences without information loss, achieving relative accuracy improvements of 8.8% and 23% on Mandarin conversation datasets HKUST and MagicData-RAMC, respectively, compared to the standard Conformer model.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.