Online Duet between Metric Embeddings and Minimum-Weight Perfect Matchings (2310.14078v2)
Abstract: Low-distortional metric embeddings are a crucial component in the modern algorithmic toolkit. In an online metric embedding, points arrive sequentially and the goal is to embed them into a simple space irrevocably, while minimizing the distortion. Our first result is a deterministic online embedding of a general metric into Euclidean space with distortion $O(\log n)\cdot\min{\sqrt{\log\Phi},\sqrt{n}}$ (or, $O(d)\cdot\min{\sqrt{\log\Phi},\sqrt{n}}$ if the metric has doubling dimension $d$), solving a conjecture by Newman and Rabinovich (2020), and quadratically improving the dependence on the aspect ratio $\Phi$ from Indyk et al.\ (2010). Our second result is a stochastic embedding of a metric space into trees with expected distortion $O(d\cdot \log\Phi)$, generalizing previous results (Indyk et al.\ (2010), Bartal et al.\ (2020)). Next, we study the \emph{online minimum-weight perfect matching} problem, where a sequence of $2n$ metric points arrive in pairs, and one has to maintain a perfect matching at all times. We allow recourse (as otherwise the order of arrival determines the matching). The goal is to return a perfect matching that approximates the \emph{minimum-weight} perfect matching at all times, while minimizing the recourse. Our third result is a randomized algorithm with competitive ratio $O(d\cdot \log \Phi)$ and recourse $O(\log \Phi)$ against an oblivious adversary, this result is obtained via our new stochastic online embedding. Our fourth result is a deterministic algorithm against an adaptive adversary, using $O(\log2 n)$ recourse, that maintains a matching of weight at most $O(\log n)$ times the weight of the MST, i.e., a matching of lightness $O(\log n)$. We complement our upper bounds with a strategy for an oblivious adversary that, with recourse $r$, establishes a lower bound of $\Omega(\frac{\log n}{r \log r})$ for both competitive ratio and lightness.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.