Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Online Duet between Metric Embeddings and Minimum-Weight Perfect Matchings (2310.14078v2)

Published 21 Oct 2023 in cs.DS and cs.CG

Abstract: Low-distortional metric embeddings are a crucial component in the modern algorithmic toolkit. In an online metric embedding, points arrive sequentially and the goal is to embed them into a simple space irrevocably, while minimizing the distortion. Our first result is a deterministic online embedding of a general metric into Euclidean space with distortion $O(\log n)\cdot\min{\sqrt{\log\Phi},\sqrt{n}}$ (or, $O(d)\cdot\min{\sqrt{\log\Phi},\sqrt{n}}$ if the metric has doubling dimension $d$), solving a conjecture by Newman and Rabinovich (2020), and quadratically improving the dependence on the aspect ratio $\Phi$ from Indyk et al.\ (2010). Our second result is a stochastic embedding of a metric space into trees with expected distortion $O(d\cdot \log\Phi)$, generalizing previous results (Indyk et al.\ (2010), Bartal et al.\ (2020)). Next, we study the \emph{online minimum-weight perfect matching} problem, where a sequence of $2n$ metric points arrive in pairs, and one has to maintain a perfect matching at all times. We allow recourse (as otherwise the order of arrival determines the matching). The goal is to return a perfect matching that approximates the \emph{minimum-weight} perfect matching at all times, while minimizing the recourse. Our third result is a randomized algorithm with competitive ratio $O(d\cdot \log \Phi)$ and recourse $O(\log \Phi)$ against an oblivious adversary, this result is obtained via our new stochastic online embedding. Our fourth result is a deterministic algorithm against an adaptive adversary, using $O(\log2 n)$ recourse, that maintains a matching of weight at most $O(\log n)$ times the weight of the MST, i.e., a matching of lightness $O(\log n)$. We complement our upper bounds with a strategy for an oblivious adversary that, with recourse $r$, establishes a lower bound of $\Omega(\frac{\log n}{r \log r})$ for both competitive ratio and lightness.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.