Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Discrete-time Networked Competitive Bivirus SIS Model (2310.13853v1)

Published 20 Oct 2023 in eess.SY, cs.SY, math.DS, and physics.soc-ph

Abstract: The paper deals with the analysis of a discrete-time networked competitive bivirus susceptible-infected-susceptible (SIS) model. More specifically, we suppose that virus 1 and virus 2 are circulating in the population and are in competition with each other. We show that the model is strongly monotone, and that, under certain assumptions, it does not admit any periodic orbit. We identify a sufficient condition for exponential convergence to the disease-free equilibrium (DFE). Assuming only virus 1 (resp. virus 2) is alive, we establish a condition for global asymptotic convergence to the single-virus endemic equilibrium of virus 1 (resp. virus 2) -- our proof does not rely on the construction of a Lyapunov function. Assuming both virus 1 and virus 2 are alive, we establish a condition which ensures local exponential convergence to the single-virus equilibrium of virus 1 (resp. virus 2). Finally, we provide a sufficient (resp. necessary) condition for the existence of a coexistence equilibrium.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.