Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Foundation Model's Embedded Representations May Detect Distribution Shift (2310.13836v2)

Published 20 Oct 2023 in cs.LG and cs.CL

Abstract: Sampling biases can cause distribution shifts between train and test datasets for supervised learning tasks, obscuring our ability to understand the generalization capacity of a model. This is especially important considering the wide adoption of pre-trained foundational neural networks -- whose behavior remains poorly understood -- for transfer learning (TL) tasks. We present a case study for TL on the Sentiment140 dataset and show that many pre-trained foundation models encode different representations of Sentiment140's manually curated test set $M$ from the automatically labeled training set $P$, confirming that a distribution shift has occurred. We argue training on $P$ and measuring performance on $M$ is a biased measure of generalization. Experiments on pre-trained GPT-2 show that the features learnable from $P$ do not improve (and in fact hamper) performance on $M$. Linear probes on pre-trained GPT-2's representations are robust and may even outperform overall fine-tuning, implying a fundamental importance for discerning distribution shift in train/test splits for model interpretation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Understanding double descent requires a fine-grained bias-variance decomposition. ArXiv, abs/2011.03321, 2020. URL https://api.semanticscholar.org/CorpusID:226278106.
  2. Understanding intermediate layers using linear classifier probes. ArXiv, abs/1610.01644, 2016. URL https://api.semanticscholar.org/CorpusID:9794990.
  3. The falcon series of language models: Towards open frontier models. 2023.
  4. Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational Linguistics, 48:207–219, 2021. URL https://api.semanticscholar.org/CorpusID:236924832.
  5. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, aug 2013. ISSN 0162-8828. doi: 10.1109/TPAMI.2013.50. URL https://doi.org/10.1109/TPAMI.2013.50.
  6. Language models are few-shot learners. Advances in neural information processing systems, 2020.
  7. Transfer learning for drug discovery. Journal of Medicinal Chemistry, 63(16):8683–8694, 2020. doi: 10.1021/acs.jmedchem.9b02147. URL https://doi.org/10.1021/acs.jmedchem.9b02147. PMID: 32672961.
  8. Generative pretraining from pixels. In International Conference on Machine Learning, 2020. URL https://api.semanticscholar.org/CorpusID:219781060.
  9. Supervised learning of universal sentence representations from natural language inference data. ArXiv, abs/1705.02364, 2017. URL https://api.semanticscholar.org/CorpusID:28971531.
  10. Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity. In NIPS, 2016. URL https://api.semanticscholar.org/CorpusID:217536627.
  11. Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019. URL https://api.semanticscholar.org/CorpusID:52967399.
  12. Toy models of superposition, 2022.
  13. Head2toe: Utilizing intermediate representations for better transfer learning. In International Conference on Machine Learning, 2022. URL https://api.semanticscholar.org/CorpusID:245837741.
  14. Exploring the limits of out-of-distribution detection. In Neural Information Processing Systems, 2021. URL https://api.semanticscholar.org/CorpusID:235358891.
  15. Gemini: A family of highly capable multimodal models, 2023.
  16. Deep neural networks with random gaussian weights: A universal classification strategy? IEEE Transactions on Signal Processing, 64:3444–3457, 2015. URL https://api.semanticscholar.org/CorpusID:2906154.
  17. Twitter sentiment classification using distant supervision. In Stanford CS224N Project Report, 2009. URL https://api.semanticscholar.org/CorpusID:18635269.
  18. On the joint interaction of models, data, and features, 2023.
  19. Similarity of neural network representations revisited. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.  3519–3529. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/kornblith19a.html.
  20. Fine-tuning can distort pretrained features and underperform out-of-distribution. In International Conference on Learning Representations, 2022. URL https://api.semanticscholar.org/CorpusID:247011290.
  21. Improved baselines with visual instruction tuning, 2023.
  22. Roberta: A robustly optimized bert pretraining approach. ArXiv, abs/1907.11692, 2019. URL https://api.semanticscholar.org/CorpusID:198953378.
  23. The generalization error of random features regression: Precise asymptotics and the double descent curve. Communications on Pure and Applied Mathematics, 75, 2019. URL https://api.semanticscholar.org/CorpusID:199668852.
  24. Insights on representational similarity in neural networks with canonical correlation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/a7a3d70c6d17a73140918996d03c014f-Paper.pdf.
  25. Pytorch: An imperative style, high-performance deep learning library. In Neural Information Processing Systems, 2019. URL https://api.semanticscholar.org/CorpusID:202786778.
  26. The RefinedWeb dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116, 2023. URL https://arxiv.org/abs/2306.01116.
  27. Dataset Shift in Machine Learning. The MIT Press, 2009. ISBN 0262170051.
  28. Language models are unsupervised multitask learners, 2019. URL https://api.semanticscholar.org/CorpusID:160025533.
  29. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(1), jan 2020. ISSN 1532-4435.
  30. High-resolution image synthesis with latent diffusion models, 2021.
  31. Recursive deep models for semantic compositionality over a sentiment treebank. In Conference on Empirical Methods in Natural Language Processing, 2013. URL https://api.semanticscholar.org/CorpusID:990233.
  32. Llama 2: Open foundation and fine-tuned chat models. ArXiv, abs/2307.09288, 2023. URL https://api.semanticscholar.org/CorpusID:259950998.
  33. Is fine-tuning needed? pre-trained language models are near perfect for out-of-domain detection. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  12813–12832, Toronto, Canada, jul 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.717. URL https://aclanthology.org/2023.acl-long.717.
  34. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
  35. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv., 53(3), jun 2020. ISSN 0360-0300. doi: 10.1145/3386252. URL https://doi.org/10.1145/3386252.
  36. Toward understanding the feature learning process of self-supervised contrastive learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.  11112–11122. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/wen21c.html.
  37. Huggingface’s transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019. URL http://arxiv.org/abs/1910.03771.
  38. Tensor programs iv: Feature learning in infinite-width neural networks. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.  11727–11737. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/yang21c.html.
  39. On the power and limitations of random features for understanding neural networks. In Neural Information Processing Systems, 2019. URL https://api.semanticscholar.org/CorpusID:90262791.
  40. How transferable are features in deep neural networks? In NIPS, 2014. URL https://api.semanticscholar.org/CorpusID:362467.
  41. Sigmoid loss for language image pre-training. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp.  11941–11952, 2023. doi: 10.1109/ICCV51070.2023.01100.
  42. Transfer learning for low-resource neural machine translation. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.  1568–1575, Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1163. URL https://aclanthology.org/D16-1163.
Citations (1)

Summary

We haven't generated a summary for this paper yet.