Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Computationally Efficient and Error Aware Surrogate Construction for Numerical Solutions of Subsurface Flow Through Porous Media (2310.13765v1)

Published 20 Oct 2023 in stat.CO, cs.NA, and math.NA

Abstract: Limiting the injection rate to restrict the pressure below a threshold at a critical location can be an important goal of simulations that model the subsurface pressure between injection and extraction wells. The pressure is approximated by the solution of Darcy's partial differential equation (PDE) for a given permeability field. The subsurface permeability is modeled as a random field since it is known only up to statistical properties. This induces uncertainty in the computed pressure. Solving the PDE for an ensemble of random permeability simulations enables estimating a probability distribution for the pressure at the critical location. These simulations are computationally expensive, and practitioners often need rapid online guidance for real-time pressure management. An ensemble of numerical PDE solutions is used to construct a Gaussian process regression model that can quickly predict the pressure at the critical location as a function of the extraction rate and permeability realization. Our first novel contribution is to identify a sampling methodology for the random environment and matching kernel technology for which fitting the Gaussian process regression model scales as O(n log n) instead of the typical O(n3) rate in the number of samples n used to fit the surrogate. The surrogate model allows almost instantaneous predictions for the pressure at the critical location as a function of the extraction rate and permeability realization. Our second contribution is a novel algorithm to calibrate the uncertainty in the surrogate model to the discrepancy between the true pressure solution of Darcy's equation and the numerical solution. Although our method is derived for building a surrogate for the solution of Darcy's equation with a random permeability field, the framework broadly applies to solutions of other PDE with random coefficients.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube