Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A study of the impact of generative AI-based data augmentation on software metadata classification (2310.13714v1)

Published 14 Oct 2023 in cs.SE, cs.AI, cs.CL, and cs.LG

Abstract: This paper presents the system submitted by the team from IIT(ISM) Dhanbad in FIRE IRSE 2023 shared task 1 on the automatic usefulness prediction of code-comment pairs as well as the impact of LLM(LLM) generated data on original base data towards an associated source code. We have developed a framework where we train a machine learning-based model using the neural contextual representations of the comments and their corresponding codes to predict the usefulness of code-comments pair and performance analysis with LLM-generated data with base data. In the official assessment, our system achieves a 4% increase in F1-score from baseline and the quality of generated data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.